+ - 0:00:00
Notes for current slide
Notes for next slide

Map matching in R

Introducing the forthcoming ‘mapmatchr’ package

Ashirwad Barnwal

2022-02-24

1 / 25

What is map matching?

2 / 25

What is map matching?

It's the process of matching noisy GPS data to the most probable travel route.

2 / 25

What is map matching?

It's the process of matching noisy GPS data to the most probable travel route.

2 / 25

Who are interested in map matching and why?

3 / 25

Who are interested in map matching and why?

Not surprisingly, anybody who deals with GPS data!

3 / 25

Who are interested in map matching and why?

Not surprisingly, anybody who deals with GPS data!

  • Auto insurance companies: Crash risk assessment (e.g., Are drivers often driving through high crash risk roads? Do we need to adjust premiums?)
3 / 25

Who are interested in map matching and why?

Not surprisingly, anybody who deals with GPS data!

  • Auto insurance companies: Crash risk assessment (e.g., Are drivers often driving through high crash risk roads? Do we need to adjust premiums?)

  • Highway agencies: Streamline winter maintenance efforts (e.g., Are snowplows serving the same route multiple times? Can they be directed somewhere else?)

3 / 25

Who are interested in map matching and why?

Not surprisingly, anybody who deals with GPS data!

  • Auto insurance companies: Crash risk assessment (e.g., Are drivers often driving through high crash risk roads? Do we need to adjust premiums?)

  • Highway agencies: Streamline winter maintenance efforts (e.g., Are snowplows serving the same route multiple times? Can they be directed somewhere else?)

  • Transportation researchers: Travel pattern analyses (e.g., Do older drivers with cognition and/or vision problem(s) prefer one route over another?)

3 / 25

How can we perform map matching?

4 / 25

Hello, FMM!

5 / 25

Meet the fast map matching (FMM) tool

6 / 25

FMM tool overview

7 / 25

Input 1: Road network

Fields & definition:

field definition
id ID of a line
source source node ID
target target node ID

8 / 25

Input 2: GPS points

Fields & definition:

field definition
id Trip ID
x GPS longitude
y GPS latitude
timestamp (optional) Observation timestamp

Additional notes:

  • Each row has a single observation
  • GPS points must be sorted by trip ID and timestamp
  • Use ; as a delimiter

Valid example:

id;x;y;timestamp
1;1.65889;0.25098;1
1;1.65494;0.70183;2
1;2.49336;1.76567;3
1;3.54929;1.88827;4
1;4.13064;2.45776;5
2;4.15042;1.60353;2
2;3.47019;0.92330;4
2;2.40635;0.92330;6
2;2.14533;1.53234;8
2;2.08601;2.57641;10
9 / 25

Input 3: Upper Bounded Origin Destination Table (UBODT) file

Fields & definition:

field definition
source Source node index
target Target node index
next_n Index of the node visited after the source node
prev_n Index of the previous node visited before the target node
next_e Index of the next edge visited after the source node
distance Shortest path distance between the source and target nodes

Note: UBODT file is only needed for the FMM tool

Valid example:

source;target;next_n;prev_n;next_e;distance
0;6;4;7;4;3
0;10;4;5;4;3
0;8;4;5;4;3
0;9;4;4;4;2
0;7;4;4;4;2
0;4;4;0;4;1
0;12;4;9;4;3
0;1;1;0;0;1
0;5;4;4;4;2
1;9;0;4;1;3
1;7;0;4;1;3
1;4;0;0;1;2
1;5;0;4;1;3
1;0;0;1;1;1
10 / 25

UBODT file is computed from the road network

11 / 25

Input 4: Config files

UBODT config

<?xml version="1.0" encoding="utf-8"?>
<config>
<input>
<network>
<file>../data/edges.shp</file>
<id>id</id>
<source>source</source>
<target>target</target>
</network>
</input>
<parameters>
<delta>3</delta>
</parameters>
<output>
<file>../data/ubodt.txt</file>
</output>
</config>

FMM config

<?xml version="1.0" encoding="utf-8"?>
<config>
<input>
<ubodt>
<file>../data/ubodt.txt</file>
</ubodt>
<network>
<file>../data/edges.shp</file>
<id>id</id>
</network>
<gps>
<file>../data/trips.shp</file>
<id>id</id>
</gps>
</input>
<parameters>
<k>4</k>
<r>0.4</r>
<gps_error>0.5</gps_error>
</parameters>
<output>
<file>mr.txt</file>
</output>
</config>
12 / 25

Output: Map matching result

field definition
ogeom Original trajectory geometry
pgeom A line connecting the matched points
mgeom The geometry of the cpath
error Distance from each point to its matched point
offset Distance from the matched point to the start of the matched edge
spdist Shortest path distances traversed between consecutive points
opath Edge matched to each point in trajectory
cpath The path traversed by the trajectory
tpath Edges traversed between consecutive points

13 / 25

Intro to GIS basics

14 / 25

GIS file formats

FORMAT SHAPEFILE GEOJSON GEOPACKAGE
Age (years) 30 10 5
Compatibility GIS GIS, any text editor GIS, SQL
Relative size 1.00 2.26 1.30
Compression ratio 4.79:1 12.08:1 4.53:1
QGIS performance Good Bad Good
Use case Old standard Web, small data sets New standard
15 / 25

Road network sometimes has topological errors

error definition
Dangles Lines that should be connected are disconnected
Switchbacks A line has a bend in it
Knots/Loops A line crosses itself or self-overlaps
Overshoots A line extends past the line it should connect to
Undershoots A line does not touch the line it should connect to

16 / 25

Clean topological errors beforehand

GRASS GIS

R interface for GRASS

17 / 25

Check this tutorial

18 / 25

Import and visualize data

19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile"))
## Simple feature collection with 8 features and 1 field
## Geometry type: LINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 8 x 2
## road_id geometry
## <chr> <LINESTRING [m]>
## 1 52968114 (569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 569223.6 4600~
## 2 52968327 (570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 570404.5 4600~
## 3 52968853 (568206.3 4600914, 568264 4600914, 568314 4600914, 568366.6 4600913,~
## 4 53033919 (569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 569108.5 4600~
## 5 53034396 (569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 569102.1 4601~
## 6 53034711 (569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 569121.2 4600~
## 7 53172262 (570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 570342.5 4598~
## 8 53172296 (570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 570307.5 4601~
19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile")) ->
network_shp
19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile")) ->
network_shp
# Read GeoJSON
read_sf(
here("data", "geojson", "network.geojson")
)
## Simple feature collection with 8 features and 1 field
## Geometry type: MULTILINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 8 x 2
## road_id geometry
## <chr> <MULTILINESTRING [m]>
## 1 52968114 ((569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 569223.6 460~
## 2 52968327 ((570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 570404.5 460~
## 3 52968853 ((568206.3 4600914, 568264 4600914, 568314 4600914, 568366.6 4600913~
## 4 53033919 ((569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 569108.5 460~
## 5 53034396 ((569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 569102.1 460~
## 6 53034711 ((569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 569121.2 460~
## 7 53172262 ((570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 570342.5 459~
## 8 53172296 ((570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 570307.5 460~
19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile")) ->
network_shp
# Read GeoJSON
read_sf(
here("data", "geojson", "network.geojson")
) ->
network_geojson
19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile")) ->
network_shp
# Read GeoJSON
read_sf(
here("data", "geojson", "network.geojson")
) ->
network_geojson
# Read GeoPackage
read_sf(
here("data", "geopackage", "network.gpkg")
)
## Simple feature collection with 8 features and 1 field
## Geometry type: MULTILINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 8 x 2
## road_id geom
## <chr> <MULTILINESTRING [m]>
## 1 52968114 ((569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 569223.6 460~
## 2 52968327 ((570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 570404.5 460~
## 3 52968853 ((568206.3 4600914, 568264 4600914, 568314 4600914, 568366.6 4600913~
## 4 53033919 ((569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 569108.5 460~
## 5 53034396 ((569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 569102.1 460~
## 6 53034711 ((569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 569121.2 460~
## 7 53172262 ((570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 570342.5 459~
## 8 53172296 ((570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 570307.5 460~
19 / 25

Import road network data

# Read Shapefile
read_sf(here("data", "shapefile")) ->
network_shp
# Read GeoJSON
read_sf(
here("data", "geojson", "network.geojson")
) ->
network_geojson
# Read GeoPackage
read_sf(
here("data", "geopackage", "network.gpkg")
) ->
network_gpkg
19 / 25

Visualize road network

mapview(network_geojson)
network_geojson
52968114
52968327
52968853
53033919
53034396
53034711
53172262
53172296
1 km
3000 ft
Leaflet | © OpenStreetMap contributors © CARTO
19 / 25

Import GPS data

gps <- read_csv(
here("data", "gps.csv"),
show_col_types = FALSE
)
gps
## # A tibble: 38 x 4
## sequence speed_mph longitude latitude
## <dbl> <dbl> <dbl> <dbl>
## 1 1 5.90 -92.2 41.6
## 2 2 5.50 -92.2 41.6
## 3 3 5.21 -92.2 41.6
## 4 4 9.37 -92.2 41.6
## 5 5 13.4 -92.2 41.6
## 6 6 12.1 -92.2 41.6
## 7 7 13.0 -92.2 41.6
## 8 8 13.4 -92.2 41.6
## 9 9 11.6 -92.2 41.6
## 10 10 10.6 -92.2 41.6
## # ... with 28 more rows
19 / 25

Import GPS data

gps <- read_csv(
here("data", "gps.csv"),
show_col_types = FALSE
) %>%
st_as_sf(
coords = c("longitude", "latitude"),
crs = 4326 # WGS 84
)
gps
## Simple feature collection with 38 features and 2 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -92.16488 ymin: 41.55675 xmax: -92.15668 ymax: 41.56208
## Geodetic CRS: WGS 84
## # A tibble: 38 x 3
## sequence speed_mph geometry
## * <dbl> <dbl> <POINT [°]>
## 1 1 5.90 (-92.16488 41.557)
## 2 2 5.50 (-92.16471 41.55698)
## 3 3 5.21 (-92.16432 41.55699)
## 4 4 9.37 (-92.16412 41.55698)
## 5 5 13.4 (-92.16378 41.55697)
## 6 6 12.1 (-92.16342 41.55698)
## 7 7 13.0 (-92.16302 41.55699)
## 8 8 13.4 (-92.16263 41.55701)
## 9 9 11.6 (-92.1623 41.557)
## 10 10 10.6 (-92.16199 41.55698)
## # ... with 28 more rows
19 / 25

Import GPS data

gps <- read_csv(
here("data", "gps.csv"),
show_col_types = FALSE
) %>%
st_as_sf(
coords = c("longitude", "latitude"),
crs = 4326 # WGS 84
) %>%
st_transform(26915) # NAD83 / UTM zone 15N
gps
## Simple feature collection with 38 features and 2 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 569640.7 ymin: 4600905 xmax: 570320 ymax: 4601499
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 38 x 3
## sequence speed_mph geometry
## * <dbl> <dbl> <POINT [m]>
## 1 1 5.90 (569640.7 4600930)
## 2 2 5.50 (569654.5 4600928)
## 3 3 5.21 (569687 4600928)
## 4 4 9.37 (569703.7 4600927)
## 5 5 13.4 (569732.3 4600927)
## 6 6 12.1 (569762.1 4600928)
## 7 7 13.0 (569796 4600930)
## 8 8 13.4 (569828.1 4600932)
## 9 9 11.6 (569855.7 4600931)
## 10 10 10.6 (569881.7 4600929)
## # ... with 28 more rows
19 / 25

Visualize GPS data

mapview(network_geojson)
network_geojson
52968114
52968327
52968853
53033919
53034396
53034711
53172262
53172296
1 km
3000 ft
Leaflet | © OpenStreetMap contributors © CARTO
19 / 25

Visualize GPS data

mapview(network_geojson) +
mapview(gps)
network_geojson
52968114
52968327
52968853
53033919
53034396
53034711
53172262
53172296
gps
1 km
3000 ft
Leaflet | © OpenStreetMap contributors © CARTO
19 / 25

Hello, mapmatchr!

20 / 25

Helper functions

21 / 25

Helper function 1: Transform network

reveal <- args(.transform_network)
reveal
## function (network, output = "network")
## NULL
21 / 25

Helper function 1: Transform network

reveal <- args(.transform_network)
reveal <- network_geojson
reveal
## Simple feature collection with 8 features and 1 field
## Geometry type: MULTILINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 8 x 2
## road_id geometry
## <chr> <MULTILINESTRING [m]>
## 1 52968114 ((569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 569223.6 460~
## 2 52968327 ((570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 570404.5 460~
## 3 52968853 ((568206.3 4600914, 568264 4600914, 568314 4600914, 568366.6 4600913~
## 4 53033919 ((569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 569108.5 460~
## 5 53034396 ((569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 569102.1 460~
## 6 53034711 ((569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 569121.2 460~
## 7 53172262 ((570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 570342.5 459~
## 8 53172296 ((570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 570307.5 460~
21 / 25

Helper function 1: Transform network

reveal <- args(.transform_network)
reveal <- network_geojson %>%
.transform_network()
reveal
## Simple feature collection with 16 features and 3 fields
## Geometry type: LINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 16 x 4
## id source target geometry
## <int> <int> <int> <LINESTRING [m]>
## 1 1 1 2 (569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 5~
## 2 2 2 1 (570313.9 4600953, 570298.5 4600952, 570268.8 4600952, 5~
## 3 3 2 3 (570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 5~
## 4 4 3 2 (573136.6 4600571, 573123.6 4600570, 573097.6 4600570, 5~
## 5 5 1 4 (569107.4 4600923, 569078.3 4600922, 569046.9 4600920, 5~
## 6 6 4 1 (568206.3 4600914, 568264 4600914, 568314 4600914, 56836~
## 7 7 1 5 (569107.4 4600923, 569108.5 4600836, 569108.8 4600753, 5~
## 8 8 5 1 (569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 5~
## 9 9 1 6 (569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 5~
## 10 10 6 1 (569100.9 4601360, 569102.1 4601298, 569104.2 4601125, 5~
## 11 11 7 8 (569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 5~
## 12 12 8 7 (569112.8 4600687, 569119.2 4600364, 569121.2 4600097, 5~
## 13 13 2 9 (570313.9 4600953, 570315.1 4600927, 570320.4 4600846, 5~
## 14 14 9 2 (570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 5~
## 15 15 2 10 (570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 5~
## 16 16 10 2 (570294.9 4602141, 570294.9 4602141, 570297.5 4601979, 5~
21 / 25

Helper function 1: Transform network

reveal <- args(.transform_network)
reveal <- network_geojson %>%
.transform_network()
reveal <- network_geojson %>%
.transform_network(output = "join_key")
reveal
## # A tibble: 16 x 2
## id road_id
## * <int> <chr>
## 1 1 52968114
## 2 2 52968114
## 3 3 52968327
## 4 4 52968327
## 5 5 52968853
## 6 6 52968853
## 7 7 53033919
## 8 8 53033919
## 9 9 53034396
## 10 10 53034396
## 11 11 53034711
## 12 12 53034711
## 13 13 53172262
## 14 14 53172262
## 15 15 53172296
## 16 16 53172296
21 / 25

Helper function 1: Transform network

reveal <- args(.transform_network)
reveal <- network_geojson %>%
.transform_network()
reveal <- network_geojson %>%
.transform_network(output = "join_key")
reveal <- network_geojson %>%
.transform_network(output = "both")
reveal
## $network
## Simple feature collection with 16 features and 3 fields
## Geometry type: LINESTRING
## Dimension: XY
## Bounding box: xmin: 568206.3 ymin: 4598184 xmax: 573136.6 ymax: 4602141
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 16 x 4
## id source target geometry
## <int> <int> <int> <LINESTRING [m]>
## 1 1 1 2 (569107.4 4600923, 569162.5 4600924, 569200.6 4600924, 5~
## 2 2 2 1 (570313.9 4600953, 570298.5 4600952, 570268.8 4600952, 5~
## 3 3 2 3 (570313.9 4600953, 570344.2 4600953, 570376.7 4600953, 5~
## 4 4 3 2 (573136.6 4600571, 573123.6 4600570, 573097.6 4600570, 5~
## 5 5 1 4 (569107.4 4600923, 569078.3 4600922, 569046.9 4600920, 5~
## 6 6 4 1 (568206.3 4600914, 568264 4600914, 568314 4600914, 56836~
## 7 7 1 5 (569107.4 4600923, 569108.5 4600836, 569108.8 4600753, 5~
## 8 8 5 1 (569112.8 4600687, 569111.1 4600715, 569108.8 4600753, 5~
## 9 9 1 6 (569107.4 4600923, 569107.1 4600943, 569104.2 4601125, 5~
## 10 10 6 1 (569100.9 4601360, 569102.1 4601298, 569104.2 4601125, 5~
## 11 11 7 8 (569130.1 4599550, 569126.9 4599800, 569122.8 4599973, 5~
## 12 12 8 7 (569112.8 4600687, 569119.2 4600364, 569121.2 4600097, 5~
## 13 13 2 9 (570313.9 4600953, 570315.1 4600927, 570320.4 4600846, 5~
## 14 14 9 2 (570350.5 4598184, 570348.7 4598267, 570345.9 4598386, 5~
## 15 15 2 10 (570313.9 4600953, 570311.2 4601011, 570308.2 4601102, 5~
## 16 16 10 2 (570294.9 4602141, 570294.9 4602141, 570297.5 4601979, 5~
##
## $join_key
## # A tibble: 16 x 2
## id road_id
## * <int> <chr>
## 1 1 52968114
## 2 2 52968114
## 3 3 52968327
## 4 4 52968327
## 5 5 52968853
## 6 6 52968853
## 7 7 53033919
## 8 8 53033919
## 9 9 53034396
## 10 10 53034396
## 11 11 53034711
## 12 12 53034711
## 13 13 53172262
## 14 14 53172262
## 15 15 53172296
## 16 16 53172296
21 / 25

Helper function 1b: Visualize transformed network

reveal <- args(.viz_transformed_network)
reveal
## function (network)
## NULL
21 / 25

Helper function 1b: Visualize transformed network

reveal <- args(.viz_transformed_network)
reveal <- network_geojson %>%
.viz_transformed_network()
reveal
network
52968114
52968327
52968853
53033919
53034396
53034711
53172262
53172296
2 km
1 mi
Leaflet | © OpenStreetMap contributors © CARTO
nodes
edges
2 km
1 mi
Leaflet | © OpenStreetMap contributors © CARTO
21 / 25

Helper function 2: Transform GPS

reveal <- args(.transform_gps)
reveal
## function (gps)
## NULL
21 / 25

Helper function 2: Transform GPS

reveal <- args(.transform_gps)
reveal <- gps
reveal
## Simple feature collection with 38 features and 2 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 569640.7 ymin: 4600905 xmax: 570320 ymax: 4601499
## Projected CRS: NAD83 / UTM zone 15N
## # A tibble: 38 x 3
## sequence speed_mph geometry
## * <dbl> <dbl> <POINT [m]>
## 1 1 5.90 (569640.7 4600930)
## 2 2 5.50 (569654.5 4600928)
## 3 3 5.21 (569687 4600928)
## 4 4 9.37 (569703.7 4600927)
## 5 5 13.4 (569732.3 4600927)
## 6 6 12.1 (569762.1 4600928)
## 7 7 13.0 (569796 4600930)
## 8 8 13.4 (569828.1 4600932)
## 9 9 11.6 (569855.7 4600931)
## 10 10 10.6 (569881.7 4600929)
## # ... with 28 more rows
21 / 25

Helper function 2: Transform GPS

reveal <- args(.transform_gps)
reveal <- gps %>%
.transform_gps()
reveal
## # A tibble: 38 x 3
## id x y
## <dbl> <dbl> <dbl>
## 1 1 569641. 4600930.
## 2 1 569654. 4600928.
## 3 1 569687. 4600928.
## 4 1 569704. 4600927.
## 5 1 569732. 4600927.
## 6 1 569762. 4600928.
## 7 1 569796. 4600930.
## 8 1 569828. 4600932.
## 9 1 569856. 4600931.
## 10 1 569882. 4600929.
## # ... with 28 more rows
21 / 25

Helper function 3: Define UBODT config

reveal <- args(.define_ubodt_config)
reveal
## function (network_file, output_file, use_omp = FALSE, ...)
## NULL
21 / 25

Helper function 3: Define UBODT config

reveal <- args(.define_ubodt_config)
reveal <- .define_ubodt_config(
network_file = "edges.shp",
output_file = "ubodt.txt"
)
reveal
## {xml_document}
## <config>
## [1] <input>\n <network>\n <file>edges.shp</file>\n <id>id</id>\n <s ...
## [2] <parameters>\n <delta>3000</delta>\n</parameters>
## [3] <output>\n <file>ubodt.txt</file>\n</output>
## [4] <other>\n <log_level>2</log_level>\n</other>
21 / 25

Helper function 3: Define UBODT config

reveal <- args(.define_ubodt_config)
reveal <- .define_ubodt_config(
network_file = "edges.shp",
output_file = "ubodt.txt"
) %>%
message()
reveal
## <?xml version="1.0" encoding="UTF-8"?>
## <config>
## <input>
## <network>
## <file>edges.shp</file>
## <id>id</id>
## <source>source</source>
## <target>target</target>
## </network>
## </input>
## <parameters>
## <delta>3000</delta>
## </parameters>
## <output>
## <file>ubodt.txt</file>
## </output>
## <other>
## <log_level>2</log_level>
## </other>
## </config>
## NULL
21 / 25

Helper function 4: Define map match config

reveal <- args(.define_map_match_config)
reveal
## function (network_file, gps_file, output_file, match_method = "fmm",
## ubodt_file = NULL, gps_point = TRUE, use_omp = FALSE, ...)
## NULL
21 / 25

Helper function 4: Define map match config

reveal <- args(.define_map_match_config)
reveal <- .define_map_match_config(
network_file = "edges.shp",
gps_file = "trips.csv",
output_file = "mr.txt",
ubodt_file = "ubodt.txt"
)
reveal
## {xml_document}
## <config>
## [1] <input>\n <network>\n <file>edges.shp</file>\n <id>id</id>\n <s ...
## [2] <parameters>\n <k>8</k>\n <r>300</r>\n <gps_error>50</gps_error>\n</pa ...
## [3] <output>\n <file>mr.txt</file>\n <fields>\n <all/>\n </fields>\n</o ...
## [4] <other>\n <log_level>2</log_level>\n <step>100</step>\n</other>
21 / 25

Helper function 4: Define map match config

reveal <- args(.define_map_match_config)
reveal <- .define_map_match_config(
network_file = "edges.shp",
gps_file = "trips.csv",
output_file = "mr.txt",
ubodt_file = "ubodt.txt"
) %>%
message()
reveal
## <?xml version="1.0" encoding="UTF-8"?>
## <config>
## <input>
## <network>
## <file>edges.shp</file>
## <id>id</id>
## <source>source</source>
## <target>target</target>
## </network>
## <gps>
## <file>trips.csv</file>
## <id>id</id>
## <x>x</x>
## <y>y</y>
## <timestamp>timestamp</timestamp>
## <gps_point/>
## </gps>
## <ubodt>
## <file>ubodt.txt</file>
## </ubodt>
## </input>
## <parameters>
## <k>8</k>
## <r>300</r>
## <gps_error>50</gps_error>
## </parameters>
## <output>
## <file>mr.txt</file>
## <fields>
## <all/>
## </fields>
## </output>
## <other>
## <log_level>2</log_level>
## <step>100</step>
## </other>
## </config>
## NULL
21 / 25

Main functions

22 / 25

Main function: Snap GPS traces

snap_res <- args(snap_gps_traces)
snap_res
## function (network, gps, match_method = "fmm", delta = 3000, candidates = 8,
## radius = 300, gps_error = 50, gps_point = TRUE, use_omp = FALSE,
## ubodt_config = NULL, match_config = NULL)
## NULL
22 / 25

Main function: Snap GPS traces

snap_res <- args(snap_gps_traces)
snap_res <- read_delim(
here("data", "snap-output.txt"),
delim = ";",
col_types = cols(.default = "c")
) %>%
glimpse()
snap_res
## Rows: 1
## Columns: 14
## $ id <chr> "1"
## $ opath <chr> "1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,53,53,53,5~
## $ error <chr> "4.20159,6.32479,6.35744,7.67548,8.22134,7.44478,5.49602,3.04~
## $ offset <chr> "533.694,547.488,579.928,596.593,625.213,655.111,689.051,721.~
## $ spdist <chr> "13.7941,32.4399,16.6654,28.6198,29.8974,33.9405,32.0662,27.6~
## $ pgeom <chr> "LINESTRING(569640.65 4600933.70142,569654.443551 4600933.824~
## $ cpath <chr> "1,53"
## $ tpath <chr> "1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1,53|53|53|5~
## $ mgeom <chr> "LINESTRING(569640.65 4600933.70142,569663.005055 4600933.900~
## $ ep <chr> "0.996475558307,0.9920313364,0.991949166576,0.988286544171,0.~
## $ tp <chr> "0,1,1,1,1,0.995631130634,1,1,1,1,1,1,1,1,1,1,0.875954091182,~
## $ length <chr> "1207.84590729,1207.84590729,1207.84590729,1207.84590729,1207~
## $ duration <chr> NA
## $ speed <chr> NA
## # A tibble: 1 x 14
## id opath error offset spdist pgeom cpath tpath mgeom ep tp length
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 1,1,1,1,~ 4.20~ 533.6~ 13.79~ LINE~ 1,53 1|1|~ LINE~ 0.99~ 0,1,~ 1207.~
## # ... with 2 more variables: duration <chr>, speed <chr>
22 / 25

Main function: Visualize snap output

reveal <- args(viz_snap_output_geom)
reveal
## function (gps, snap_output)
## NULL
22 / 25

Main function: Visualize snap output

reveal <- args(viz_snap_output_geom)
reveal <- viz_snap_output_geom(gps, snap_res)
reveal
100 m
500 ft
Leaflet | © OpenStreetMap contributors © CARTO
22 / 25

Main function: Visualize snap output

reveal <- args(viz_snap_output_num)
reveal
## function (snap_output)
## NULL
22 / 25

Main function: Visualize snap output

reveal <- args(viz_snap_output_num)
reveal <- viz_snap_output_num(snap_res)
reveal
01020304005101520253035
Point indexGPS error (meter)Feature:GPS error (meter)
22 / 25

Things to do

  • Create the package
  • Design logo
  • Write function to automate fmm installation
  • Write paper for submission to Elsevier's SoftwareX
23 / 25

Acknowledgements

This work was funded by the Centers for Disease Control and Prevention (U54 OH 007548). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

24 / 25

Thank You!

25 / 25

What is map matching?

2 / 25
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow